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ABSTRACT

Datasets of tens of gigabytes are becoming common in computa-
tional and experimental science. This development is driven by ad-
vances in imaging technology, producing detectors with growing
resolutions, as well as availability of cheap processing power and
memory capacity in commodity-based computing clusters.

In this article we describe the design of a visualization system
that allows scientists to interactively explore large remote data sets
in an efficient and flexible way. The system is broadly applicable
and currently used by medical scientists conducting an osteoporosis
research project. Human vertebral bodies are scanned using a high
resolution micro-CT scanner producing scans of roughly 8 GB size
each. All participating research groups require access to the cen-
trally stored data. Due to the rich internal bone structure, scientists
need to interactively explore the full dataset at coarse levels, as well
as visualize subvolumes of interest at the highest resolution.

Our solution is based on HDF5 and GridFTP. When accessing
data remotely, the HDF5 data processing pipeline is modified to
support efficient retrieval of subvolumes. We reduce the overall
latency and optimize throughput by executing high-level operations
on the remote side. The GridFTP protocol is used to pass the HDF5
requests to a customized server.

The approach takes full advantage of local graphics hardware for
rendering. Interactive visualization is accomplished using a back-
ground thread to access the datasets stored in a multi-resolution for-
mat. A hierarchical volume renderer provides seamless integration
of high resolution details with low resolution overviews.
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1 INTRODUCTION

Datasets of 10-100 gigabyte sizes are becoming more and more
common. For experimental data this is mainly due to advances
in detector technology, where spatial and temporal resolutions are
continuously increasing. If the linear spatial resolution of a detec-
tor is increased by a factor s, the resulting size of (uncompressed)
spatial data grows by s3. For time variant data, the temporal res-
olution potentially increases further. Consequently, the increase of
data volumes exceeds the growth of main memory of today’s com-
puters. Typical sizes are currently 20483×2 Bytes = 16 GB or even
40963×2 Bytes = 128 GB for a single set of image data. In addi-
tion to data acquisition systems, numerical simulations are another
important source of large datasets. With the advent of commod-
ity based cluster computing, cheap processing power is becoming
widely available, leaving many large datasets in its wake. Data from
simulations might be time dependent or even higher dimensional if
several external parameters are varied.

These massive data typically cannot be loaded completely into
main memory of graphics computers. In designing a practically
useful visualization system, one must take this fact into account.
Following Law et. al. [22], we see two fundamental but conflicting
design goals:

1. The system should be able to process any size of data, on any
size computer. Performance should scale well.

2. The system should allow users to quickly identify important
regions of the data, and then to enable focused attention to
those regions. At any stage of processing the system should
remain responsive to user interaction.

External memory algorithms and data structures [37] address the
first goal. Cox and Ellsworth [10] discussed these problems focus-
ing on visualization of 3D data. The general goal is to redesign
the algorithms to run with minimal performance loss due to out-
of-core data storage. The first step is to understand the data access
patterns. Then, when possible, the algorithm should be redesigned
to maximize data access locality, and to devise a data storage layout
consistent with the access pattern, thus amortizing the cost of indi-
vidual I/O operations over several memory access operations. More
recently, cache-oblivious algorithms [15] opened a new way of con-
sidering these problems. There, the goal is to optimize algorithms
for any kind of memory hierarchy containing caches, without need-
ing to know details of the hierarchy, such as cache or memory sizes.

We focus on the second goal: a system allowing interactive ex-
ploration of large datasets. Data management becomes a challeng-
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Figure 1: Dataflow in scientific visualization. Case 1: Images
streamed from server to client. Case 2: Geometry transferred.
Case 3: Data are preprocessed on the server. Case 4: All calcu-
lations are performed on the client.

ing task when dealing with huge amounts of data: data consistency,
storage capacity, backup facilities, and security each become prob-
lems. Therefore data is typically centrally stored and must be ac-
cessed remotely.

We present a system designed for interactive exploration of re-
motely stored large 3D image data. The visualization pipeline, as
displayed in Fig. 1, can be distributed between client and server
in various ways. From the alternative perspectives illustrated in
Fig. 1 our system follows case 3, performing data filtering on the
server and the rest of processing on the client machine. In our ap-
plication datasets have a size of roughly 8 GB, but our system also
deals well with much larger datasets. A spatially distributed re-
search group now regularly uses our system to access and analyze
micro-CT scans of full human vertebral bodies, currently compris-
ing about 0.5 TB of data in total.

The next section will describe this scenario in depth, followed
by requirements for the system. After discussing related work, the
rest of the paper presents our solution as well as applications of the
system. Finally, we draw some conclusions and summarize what
can be learned from this work.

2 SCENARIO

The work presented in this paper is related to bone research con-
ducted in a collaboration of several institutes. Osteoporosis is one
of the main targets. According to a NIH definition, this is “a skeletal
disorder characterized by compromised bone strength predisposing
to an increased risk of fracture. Bone strength reflects the integra-
tion of two main features: bone density and bone quality” [27].
The medical researchers are interested in exploring lumbar verte-
brae harvested from human cadavers. The main goal is to evalu-
ate structural loss in bone architecture and to gain new quantitative
information about the bone metabolism. This will have an impact
both on space-flying personnel – bone loss is one of the major prob-
lems during long-duration space flights [9] – and on patients with
bone diseases on Earth.

Various techniques will be used in the course of the project, in-
cluding conventional CT and micro-CT [31]; histomorphometric
analysis [35], in which the bone is cut into thin slices which are an-
alyzed using microscopy methods; and biomechanical failure load
tests. The work described here primarily deals with micro-CT scans
of full human vertebral bodies at a resolution of roughly 40µ (com-
puter tomograph type: µCT 80, www.scanco.ch). The resulting
slices are of size 2048× 2048, 2 Bytes per voxel. A complete
dataset contains roughly 1000 slices resulting in roughly 8 GB of
data. During the project at least 60 of such scans will be acquired,
stored on DLT tape and shipped to the research group which is host-
ing the central data server.

One major goal is to match and compare images from differ-
ent sources for validation and to facilitate the development of new

assessment methods. As an example, a comparison between a pho-
tograph and a visualization of the micro-CT data is displayed in
Fig. 8. An interesting pending study will be the comparison be-
tween micro-CT images taken before and after failure load test-
ing. This new technology provides new insights in the develop-
ment of micro cracks and the failure of the bone. To support these
tasks, the researchers requested the ability to interactively explore
the datasets.

3 REQUIREMENTS

Due to the size of the data, administrative tasks like handling of
tapes and backup were decided to be performed at one institution
only. Thus, it was decided to store the CT scans centrally in a data
repository. The other participating institutions have access to the
data via the Internet using 10–100 Mbit/s connections. Simplic-
ity of the data management was considered more important than
minimizing the total amount of data to be transferred. Therefore,
compression or caching of transferred data is outside the scope of
this work.

All users of the project group need to visually inspect the data
and to compare them with image data from other imaging devices
which are available locally. After identifying subvolumes for de-
tailed analysis, these should be stored locally to allow testing of
new quantification algorithms. Stable evaluation procedures must
be integrated and run on the whole datasets on a machine connected
directly to the data storage.

Budget restrictions demanded a careful investigation whether all
the goals could be achieved with commodity based hardware. Local
access to high performance visualization systems was not possible
for all partners.

Each user should be enabled to explore the data on his own us-
ing a graphical user interface. An application environment, users
were familiar with, was already present. In this specific case, the
workflow was to be smoothly integrated into Amira [33] in order to
reduce the training time for the users. A clear migration path for
legacy code and legacy file formats as well as import and export of
data was also requested.

4 PREVIOUS WORK

The visualization pipeline (Fig. 1) has five stages: data access,
data filtering (selection and modification of the data), generation
of graphics data (geometries), rendering (transforming geometries
in images), and display. Depending on the distribution scheme
between the client and the server(s), various cases can be distin-
guished (Fig. 1).

Case 1 is an image-streaming approach like VNC [30] or
Vizserver [32]. Another solution using a combination of video
streaming and remote data access is described in [12]. Approaches
that use VNC-like solutions require little or no software devel-
opment and provide a sufficient solution to visualize remote data
for many use cases. But these approaches also have their limita-
tions. Local hardware capabilities are not used, and therefore driv-
ing stereo projection or a multi-wall immersive environment like a
CAVE can be difficult. Also, running an interactive visualization
process on the server holding the data might be restricted, caused
by low end or missing graphics hardware, or a batch scheduling
system. Loading multiple datasets from different locations in the
same visualization session, or storing the data locally for further
analysis, is not directly possible. Also, network latency has a direct
influence on interactivity and might pose additional problems.

Other image-based techniques are available where the rendering
stage is distributed between the client and the server. These can be
divided in two classes. The first class of approaches tolerates arti-
facts in the generated images, thus avoiding intensive computations
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Figure 2: High level design. The Visualization Layer accesses data
through the Regular Grid Interface. Legacy code (Image Stacks, Raw
Binary, In RAM) is wrapped to be accessable through this interface.
The text describes an implementation using a Hierarchy of Arrays
stored in HDF5 which uses virtual file drivers, Disk or GridFTP, to
access the data on the Local Hard Disk or via a Network. See text
for more details.

or rendering operations on the client side, and reducing the overall
expanditure of bandwidth and compute time. High-level image-
based remote visualization techniques that have the goal to produce
accurate images like the one used in Visapult [5] or the one by Ka-
ronis et al. [19] pose requirements in computational power and/or
network bandwidth that make them prohibitive for normal users.

Another approach is to separate the filtering and graphic object
generation stages from the last two stages (rendering and image dis-
play). The server calculates geometries which are transferred to the
client which in turn handles the final rendering and the user inter-
action [18]. Depending on bandwidth, latency and computational
power a system might support different distributions of the visual-
ization pipeline [24].

The last category of remote visualization techniques, and the one
that fits best to our scenario, places the remote filtering stage on the
server side. Because our server is a low-end server dedicated at
storing data, parallel octree techniques as proposed by Freitag et al.
[14] are not usable. For volume rendering we must generate the
octree on the fly on the client machine.

A multi-resolution approach for volume rendering with 3D tex-
tures was described by LaMar et al. [21]. They employed an octree
based subsampling scheme for uniform scalar datasets to represent
regions of the data volume at different levels of resolution. Addi-
tionally, they proposed different strategies for view-dependent node
selection, and introduced the use of spherical shells as proxy ge-
ometries. Weiler et al. [38] presented a similar approach, paying
special attention to avoiding interpolation artifacts at the bound-
aries of adjacent cells at different levels of resolution. Their ap-
proach requires that adjacent regions differ by at most one level
of resolution. They further improved the technique of opacity cor-
rections to reduce visual artifacts caused by varying sampling dis-
tances of the texture slices. Boada et al. [7] presented strategies for
adaptive selection of octree nodes from the full pyramidal structure,
utilizing data homogeneity and importance criteria. Interactive vol-
ume rendering approaches with advanced lightning models using
programmable graphics hardware were proposed by Rezk-Salama
et al. [29] and Kniss et al. [20]. Guthe et al. [16] presented an inter-
active texture-based volume rendering scheme for large data sets.
They utilize a multi-level approach based on wavelet compression
in order to store the whole data in main memory and decompress
regions selectively for rendering on-the-fly.

5 DESIGN OVERVIEW

This section describes the high level design of our application. We
worked to integrate efficient (remote) external data access into an
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Figure 3: Data access queue sequence diagram. See text for discus-
sion.

existing environment, taking care to provide compatibility with the
original design wherever possible. Our design is based on a stack
of interfaces that allow different implementations to be plugged to-
gether. See Fig. 2 for an overview.

The highest level of abstraction is the interface to regular grid
data. It provides the notion of a multidimensional array of data
elements. Subblocks at various resolutions can be accessed syn-
chronously or asynchronously. This allows multi-resolution visu-
alization algorithms to progressively retrieve data, as detailed in
Sec.7. Memory is managed either by the visualization layer or the
implementation of the regular grid interface. Legacy code for ac-
cessing large files of raw binary data, stacks of images, or grids
residing completely in RAM was wrapped to comply with this in-
terface.

Asynchronous access is achieved by using a queue object
(Fig. 3). The visualization layer requests such a queue and sends it
non-blocking request block messages. Blocks are described by their
starting position, the number of voxels, and the stride between vox-
els in each dimension. Asynchronous access can be implemented
using a background thread if an underlying layer does not provide
an asynchronous I/O scheme. The background thread fetches data
and sends block available messages when data becomes available.
The visualization layer responds to these messages, interrupting
rendering, synchronously retrieving all available data, updating the
geometry and finally continuing rendering. After retrieving all re-
quired data, the visualization layer releases the queue. At any time
it may also kill the queue if the requested data is no longer needed
due to user interaction. Note that from the visualization layer’s per-
spective the whole processing runs in a single thread. All thread
synchronization problems are completely hidden behind the queue
interface.

Our implementation is based on a hierarchy of arrays. We use
HDF5 [26] as a container for the multidimensional arrays needed
by our implementation. HDF5 uses an I/O layer denoted as vir-
tual file drivers. We used this abstraction to implement efficient
remote access to the data. Details are given in the next section.
An alternative would be the netCDF API [36]. Using MPI-IO [34]
to implement this API was proposed by Li et al. [23]. However,
HDF5 provides more features than netCDF. The next major release
of netCDF (version 4) will use HDF5 as its file format. The chun-
ked data layout and the virtual file driver concept in HDF5 are es-
pecially important for our work.

6 EXTERNAL DATA STORAGE, HDF5

HDF5 is a general purpose library and file format for storing sci-
entific data. It provides a container to store multidimensional
datasets together with accompanying metadata. The major advan-
tages of HDF5 are the rich set of efficiently implemented features,
and the fact that it matured over the years into a stable, wide-
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Figure 4: Client server architecture. Client uses enhanced HDF5 as
described in the text. Server uses standard HDF5.

spread I/O library and data format. Some feature we rely on are
subblock/hyperslab selection; the flexible data model; automatic
datatype conversion (endians, types); and some choices in the data
layout of the stored dataset. But HDF5 also has its limitations, some
of which we are trying to address in our work and are described be-
low. HDF5 is open source which allowed us to change the library
internals.

The HDF5 library provides a mechanism for supporting exter-
nal I/O drivers. This allows the simple integration of various I/O
mechanisms in the HDF5 library. In this way, the access to the data
uses the same interface independent of the data locality (data stored
locally or remotely).

HDF5 natively supports only synchronous I/O. Blocks are read
using a single API call which does not return before all data is
available. We implemented asynchronous access by placing all read
calls to HDF5 into a background thread (described in Sec. 5). This
works well for handling complete requests. However interrupting a
background thread is still not possible if it is inside a HDF5 call, as
this might cause blocking behavior. We split large requests in small
blocks to decrease the potential blocking times. Still, the only clean
solution would be to add an asynchronous I/O interface to HDF5.

6.1 Data Layout

As mentioned in the introduction, the first step in designing exter-
nal memory algorithms is to understand the data access patterns.
In our scenario, subvolumes will be accessed at various resolutions
for rendering and data analysis. A somewhat different use case is
slicing. Contiguous storage is optimal for slices made up of the
two fastest running indices. The highest possible data locality, one
contiguous block of memory, is reached. But slicing in the slow-
est running dimensions requires scattered access to the whole linear
memory range, resulting in dramatically worse performance. Hier-
archical indexing schemes [28] or wavelet decomposition could be
used to optimize behavior for various use cases. HDF5 provides
the possibility to choose chunked storage on a per-dataset basis. In
chunked layout the volume is split in equally sized chunks of user

Figure 5: Preview generation. Left: Full resolution. Center: Averag-
ing 83 voxels. Right: Maximum filtering 83. Isosurfaces with same
threshold.
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Figure 6: H5Dread, sequence diagram. From left to right: Appli-
cation, Public HDF5 API, Scatter Iterator, Transformation Filter,
Gather Iterator, Virtual File Driver.

specified size, which are stored as contiguous blocks on disk.
We decided to use these HDF5 features and chose a rather simple

storage scheme. We store the dataset at the highest resolution using
HDF5 chunked layout. Preview versions, which replace 2l voxels
in each direction by one voxel, are added for use when lower res-
olution data are requested. The bounding box of higher levels is
extended to cover the whole volume. The increase of size by the
subsampled blocks is roughly 15%. Filters for preview generation
can be chosen depending on the data. Simple averaging is not al-
ways suitable, as it would cause low-pass filtering, thus hiding high
frequency details in the preview. If the original data contains thin
structures, it could be better to use a maximum filter during preview
generation. Fig. 5 shows a comparison of low resolution versions
generated by averaging and using a maximum filter. Previews are
regarded as supplementary data, and can be deleted and recreated
at any point in time. A wavelet decomposition could avoid the in-
crease in data size, but would increase data management complex-
ity. For keeping the data layout simple and increasing the chance of
long term usage (including compatibility issues), we chose to store
the original data in the simple layout described.

6.2 Remote Access

To fulfill our application requirements, it was considered sufficient
to support only read-only remote access. Write access is only
needed locally to store the data at acquisition time.

By analyzing the I/O behavior of our data readers, we observed
the reader operations could be separated into metadata reads and
other operations. Immediately after a file open, the most numerous
operations are metadata reads. The total sizes of the data read by all
these operations is usually magnitudes smaller than the actual data.
The metadata can be completely transferred to the client machine
in a single initial step (Fig. 4). It is stored in the main memory, and
used to serve all meta datareads locally.

The main limitation of the original virtual file driver concept is
the insufficient support for high-level I/O operations. An I/O driver
provides methods for low-level operations like open, close, read
and write. Relatively complex operations, e.g. H5Dread, might be
broken into a large number of read requests at different positions
in a file. However, this is highly inefficient when executed over a
high-latency network.

This problem was addressed in [4], and a plan for how to address
it in a future version of HDF5 using a virtual data access layer is
described in [25]. Our approach was to make a small modification
to the HDF5 pipeline that allows the low-level file driver to optimize
its operations depending on the initiating operation. Source code is
available at http://www.zib.de/visual/projects/gridlab/hdf5/.

As illustrated in Fig. 6, the H5Dread operation is composed of
three sub-operations. Inside a loop a gather iterator reads data
from storage, feeding it to the data type transformation. In the

http://www.zib.de/visual/projects/gridlab/hdf5/


Figure 7: The left image shows three orthogonal slices through a micro-CT scan. The intersections between the slices and the
bounding boxes of the octree nodes are highlighted. The middle image is a multi-level volume rendering of the same dataset.
The red point is the center of the region of interest. The right image is a volume rendering from the same view-point that further
displays the bounding boxes of the selected octree nodes.

last step a scatter iterator writes the data into memory. When han-
dling remote data, the virtual file driver should know if it serves a
H5Dread. Therefore, we decided to implement similar operations
for gather:init, gather:next and gather:release on the VFD level. In
init, the VFD will open a communication channel and initialize the
remote operation; next will read data from the network; and release
closes the connection to the remote host. For all other operations
which access metadata information, they can be rapidly served us-
ing the metadata stored in the main memory which was read from
the remote site at file-open time.

We define two operations that are executed on the remote server:
one for metadata gathering, and one for dataset read (as described
in detail in [17]). Currently the dataset selection specification only
supports the mapping of “simple” hyperslabs. However, we plan to
extend it to allow selections composed from simple hyperslabs by
boolean operations.

After deciding how to modify the HDF5 pipeline, we needed to
find a mechanism to use the high-level operations (H5Dread and
metadata gathering) on the remote machine holding the data. Naive
remote data access techniques that do not support customizable
high-level remote operations are not a choice for obvious reasons.

There are a number of representative client-server or remote data
access architectures available including the Storage Resource Bro-
ker [3], DataCutter [6], GridFTP [2], or OGSA [13]. Each system
has its own advantages and disadvantages. For our purposes we
chose to base our solution on GridFTP because it provides server-
side processing commands, and given its proven performance in
terms of large data transfer [1].

7 RENDERING

Besides the fact that the raw size of the scans makes it unfeasible to
keep the whole dataset in main memory on the available systems,
rendering the entire data volume in full resolution would not begin
to approach interactive frame rates.

To enable the user to quickly grasp the overall structure of the
data, we employ a hierarchical multi-resolution rendering approach.
This allows the user to define and change regions of interest and
to visualize them at the highest available resolution, while the rest
of the data volume is displayed with coarser resolution to maintain
interactivity. We choose spherical regions of interest with selectable
center and radius parameters. In addition, the user can store subsets
of the data (e.g. 2D slices or axis-aligned subvolumes) locally at
full resolution for further analysis.

We employ an octree data structure as a multi-level representa-
tion of the data volume. The data for the nodes is requested pro-
gressively according to the following scheme:

• In a first pass, the tree is traversed starting at the root node.
All blocks that intersect the region of interest are scheduled

for loading.

• Next, the coarse regions are requested at higher resolution,
depending on their distance from the region of interest.

Since the retrieval of the data is performed in a separate thread,
the visualization routines are not blocked during the loading phase.
If new data blocks have been provided by the reader thread, the vi-
sualization modules are notified via a callback mechanism, and the
new data is reflected in the next rendered frame of the visualization.

Though it results in a memory overhead of roughly 15 %, we
cache the data of coarser octree nodes, even if the data of their
subnodes is retrieved. This allows a faster update of the rendering
once the user changes the region of interest. Loading further data is
stopped once a user-defined upper memory limit is exceeded.

Besides hierarchical visualization modules for orthogonal slic-
ing and the display of height fields, we implemented a 3D texture-
based volume rendering module for the octree data structure. In the
rendering phase the octree is traversed in a view-consistent (back-
to-front) order, starting at the root node. A node is rendered if the
data of the subnodes is not available at that point.

In order to further accelerate rendering, the traversal of a subtree
can be stopped if the screen space extension of its voxels is smaller
than a user-defined threshold (measured in pixel units).

Once a node is selected, a separate 3D texture is defined (or acti-
vated if the node was cached from a previous render pass) and ren-
dered utilizing the standard approach for volume rendering with 3D
textures [11, 8]. Each node texture is sampled with slices perpen-
dicular to the viewing direction, and blended into the frame buffer.

In order to take advantage of the multi-resolution structure of the
data for faster rendering, the sample distance of the slices is adapted
with respect to the resolution level of the actual node [38].

8 TIMINGS

The goal of our measurements is to characterize the interactivity
and throughput performance of our system. We measure the av-
erage time to load one block which quantifies the responsiveness
(“user sees something changing on the screen”). The throughput of
the system can also be calculated from this number. We measured
this time for two different block size settings which influences the
system’s throughput and responsiveness.

Theoretically, the time to load one data block is latency (net-
work, GridFTP, server, client) plus block size divided by network
bandwidth. It is clear that increasing the block size will increase
the time to load one block, while simultaneously also reducing the
total time to load “all” data blocks. This is because the latency
penalty will occur for fewer blocks. In our case, since HDF5 is se-
rializing the I/O requests, we must pay the latency penalty for each
block request.



The time to load one block also directly determines the time
needed to reach the highest level of resolution around the point of
interest. Halving the side length of the blocks reduces their size to
an eighth, while adding only one level in the octree. The number
of blocks required for loading to reach the highest level is thus only
increased by a small fraction (if the octree already had a reasonable
height), and the overall time is dominated by the average time to
load one block.

Our data server is a dual Xeon 1.7 GHz equipped with a log-
ical volume storage of 170 GByte (15 MByte/sec read rate - hd-
parm). The implementation of the remote data access server is
based on an experimental version of the GridFTP server provided
by the Globus Group. We performed all timings using a dataset of
size 2048×2048×1024 with 2 Byte per voxel. The preprocessing
step needed to generate the preview levels takes around 25 minutes
and increases the size of the file from 8 GByte to approximately
10 GBytes.

Measurements for loading the dataset were performed using two
different block size settings and two different network settings. The
capacity of the network is always 100 Mbit/s, and the round-trip
time in setting 1 is below 0.2 ms (LAN) and 360 ms (WAN) in
setting 2. The two block sizes we used, are 128×128×64 voxels
(2 MByte) and 64×64×32 voxels (256 KByte) respectively. The
time to open the dataset (including the filtering and the transport of
the metadata) is roughly 6 seconds in all cases.

We measured the time and number of blocks loaded in order to
calculate the representative average load time per block. The results
for the four different settings are as follows. For 2 MByte blocks:
1.9 s/block (high-latency network) and 0.7 s/block (low-latency net-
work). For 256 KByte blocks: 1.4 s/block (high-latency network)
and 0.1 s/block (low-latency network).

Based on these numbers, we can calculate the average through-
put of the system (in Mbit/s) as block size divided by average block
load time. Using large blocks (2 MByte) we achieve 23.1 Mbit/s in
the low-latency setting and 8.3 Mbit/s in the high-latency setting.
For small blocks, the results are 20 Mbit/s and 1.4 Mbit/s for the
low/high latency settings.

As expected, in the case of a low-latency network (such as the
one of interest for our users) using small data blocks simultane-
ously results in higher interactivity and high bandwidth. The time
to load one block is much shorter than the time needed for a large
block (0.1 s vs. 0.7 s), achieving comparable times with respect to
overall throughput (20 vs. 23 Mbit/s). In the case of a high-latency
network, the large block setting might be a better choice, given the
damaging effect of high latency combined with serialized I/O re-
quests. The time needed to load one block is comparable in the two
settings (1.9 and 1.4 s), whereas the throughput is much better when
using large blocks (8 vs. 1.5 Mbit/s).

In conclusion, a smaller block size gives relatively good respon-
siveness to the user (taking roughly 3.5 seconds to reach to the full
level of detail around the point of interest). We propose a block
size of 256 KByte – 512 KByte as the optimal setting for our users
connected to the data server over a network with a round-trip time
of under 4 ms.

9 APPLICATION

The algorithms we have presented were integrated in the Amira vi-
sualization environment [33]. Here, we will present a few selected
use cases. A major goal is to compare evaluation methods based on
different imaging techniques, and to learn about the influence of the
micro structure on these methods. Matching and comparing images
is a fundamental task to achieve this goal.

In traditional histomorphometry, still the gold standard for ana-
lyzing bone structure, the bone is cut into thin slices and analyzed
using microscopy methods. Fig. 8 shows a photograph taken of part

of the bone side by side with a manually matched subvolume of the
micro-CT data. Based on these comparisons, a standard to define a
volume of interest for further assessment can be established.

Low resolution CT images are available in clinical practice. Ad-
vanced measures for bone quality assessment based on those im-
ages would be very helpful in diagnosing and monitoring bone
structural changes. These images show the averaged mineral con-
tent of the micro structure at low resolution. To learn how well the
micro structure can be assessed from the low resolution slices, it
is of great interest to locate them in the high resolution data. In
Fig. 9 the stages of this process are displayed. Investigating the mi-
cro structure might also help to finally build a mathematical model
of the deterioration process of trabecular bone.

In the near future, vertebral bodies will be scanned before and
after failure load testing. The hope of the scientists is to be able
to match locations in the two images. New insight in the develop-
ment of micro cracks and failure of the integrity of bone will be
achievable based on comparisons of the micro-structure before and
after load testing. As a result, bone strength prediction might be
improved in the future.

10 RESULTS AND FUTURE WORK

We have presented the design of a visualization application using
a distributed visualization pipeline based on remote data filtering.
The goal was to provide a tool for interactive exploration of large,
remotely stored (medical) data. The major aim was to construct a
stable and practically usable system that runs on existing hardware,
ranging from PCs to high-end graphics computers, with minimal
additional software development.

After studying and comparing carefully the various existing tech-
nologies, we decided to choose a combination of established and
new components such as HDF5, GridFTP and Amira. The system
was designed based on mainly practical requirements. Utilizing
existing components helped us to focus on the development of use-
ful visualization techniques for analyzing the remotely stored data.
After gathering substantial practical experience, we feel confident
that we have found a good solution that is applicable to many other
cases. It is possible to build a useful remote visualization system
based on existing methods and tools.

The mature interface of HDF5 allowed us to start developing
stable software based on local data access while simultaneously en-
hancing its remote capabilities. We improved the remote perfor-
mance of HDF5 by making small modifications to its I/O pipeline
which reduces the time needed to execute one read operation. We
believe that data throughput could be further improved by par-
allelizing HDF5 operations. In our case, this would be directly
achieved by allowing multiple threads to access the HDF5 library
in parallel. Also, an important issue is the lack of asynchronous ac-
cess. In interactive applications, user interaction might render the
current read operation unnecessary. Adding support to HDF5 for
canceling operations would help handling these cases. Nonethe-
less, our extended HDF5 version provides efficient remote access –
without modifications of the application code.

Our system has been deployed and used in medical research to
apply innovative analysis techniques in the study of bone diseases.
Due to practical constraints we focused on realized a stable, practi-
cally useful working system, at first deliberately leaving aside more
advanced concepts that require deeper intervention in the existing
code.
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Berlin for provision of the specimens; Wolfgang Gowin and Gisela
Beller (Center of Muscle and Bone Research, Charité, University
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Figure 8: Comparison of visualization with a photograph. Left: Image of a slice cut out of a vertebral body acquired using a flatbed scanner.
Right: Volume rendering of a manually matched subvolume (about 700×1000×100 voxel). Center: Volume rendering in front of photograph.

Figure 9: Comparison of image data acquired with a CT scanner for clinical use and data acquired using a micro-CT. Top row: A central 4 mm
thick slice is selected and averaged in z direction. The 4 mm slice from the standard CT scanner is visually matched. Left: Orthogonal side view
with measurement tools (length in mm). Center: A subvolume is selected using an interactive dragger. Right: The slice from the micro-CT
(right) is compared to the slice from the clinical CT scanner. Bottom row: After matching the slice location, the internal bone structure can
be directly compared with the clinical CT slice. Left: CT slice. Center: CT slice overlayed with transparent volume rendering. Right: Volume
rendering showing the rich trabecular structure – only part of it at full resolution.
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